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Therefore, from Eq. (A3) we have 

P=hmCA* / * . , • Windr 

which is independent of the direction of A. 
Equation (A3) holds generally. Thus, (provided only 

^in has spherical symmetry and e2iriAr'k can be replaced 
by unity) the absorption coefficient /x(X) is independent 
on the direction of A not only for cubic crystals but 
whenever the term in the square brackets in (A3) is 
independent of the direction of A. It should be noted 

that for the purpose of this calculation the space group 
and not the point group is of importance, because here 
an n-iold screw axis is equivalent to an n-iold rotation 
axis and a glide plane is equivalent to a plane of sym
metry, considering the summation over-all equivalent 
atoms. 

Thus, JU(X) will be the same for all those directions of 
A which give equal values of the expression in the square 
brackets of Eq. (A3). For example, from Eq. (A3) 
follows that when the investigated crystal possesses 
only a three-fold (or a higher) symmetry axis and the 
beam is parallel to this axis, then /i(X) is independent of 
the direction of A. 
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We have measured the near infrared absorption, Zeeman effect, and electron spin resonance of Cu2+ ions 
introduced as a substitutional impurity into single-crystal ZnO. From the g values of the lowest r 6 com
ponent of the T2 state (the ground state), gn=0.74 and gi~ 1.531, and from the g values of the r 4 r 5 

component of the E state, gn = 1.63 and gi~0, we have determined the wave functions of Cu2+ in terms 
of an LCAO MO model in which overlap only with the first nearest neighbor oxygen ions is considered. 
These wave functions indicate that the copper 3d (t2) hole spends about 40% of its time in the oxygen 
orbitals, and that the copper t2 orbitals are expanded radially with respect to the e orbitals. Corroboration 
for the radial expansion of the h orbitals is obtained from an analysis of the hyperfine splitting. It is con
cluded from our model that the large values of the hyperfine constants, \A\ = 195 X 10~4 cm -1 and | B | = 231 
X 10~4 cm-1, are due to the contribution from the orbital motion of the h hole. 

I. INTRODUCTION 

ALTHOUGH much work has been done on the spin 
resonance and optical spectra of transition metal 

impurities in compound semiconductors,1-4 the nature 
of the states remains obscure. The energy levels of 
these impurities are deep, so the hydrogenic model 
based on the effective mass formalism is not applicable.5 

An alternative point of view exists, that of the ligand 
field theory, which was originally developed for transi
tion ions in ionic lattices.6 The formalism of ligand field 
theory is based primarily on symmetry considerations, 
though its usefulness depends on the degree of localiza
tion of the center. The transition from ionic to covalent 

* On leave from the Department of Physics, University of 
Tokyo, Tokyo, Japan. 

1 G. W. Ludwig and H. H. Woodbury, in Solid State Physics, 
edited by F. Seitz and D. Turnbull (Academic Press Inc., 
New York, 1962), Vol. 13, 223. 

2 R. Pappalardo, J. Mol. Spectry. 6, 554 (1961). 
3 R. Pappalardo and R. E. Dietz, Phys. Rev. 123, 1188 (1961). 
4 H. A. Weakliem, J. Chem. Phys. 36, 2117 (1962). 
5 W. Kohn, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5, 
257. 

6 For example, see J. S. Griffith, The Theory of Transition-
Metal Ions (Cambridge University Press, Cambridge, England, 
1961). 

bonding is taken into account by allowing the param
eters used in the theory to vary. The calculation of these 
parameters is the task of a microscopic theory, and to 
our knowledge no case has so far been reported of their 
successful calculation for the case of strong covalent 
bonding such as occurs in a semiconductor.7-8 

In this paper we report a detailed investigation of the 
optical spectrum, Zeeman effect, and spin resonance of 
copper in hexagonal zinc oxide.9-10 It appears that 
copper substitutes for zinc, entering a slightly distorted 
tetrahedral site. When the Fermi level is low enough, 
the copper is divalent, having a single d hole which in its 
ground state is in a triply degenerate h orbital. Such an 
orbital is of the correct symmetry to make a bonds with 
the coordinating oxygen ions. We interpret our results in 
terms of a tight-binding LCAO (linear combination of 

7 F. S. Ham (private communication) is also investigating 
interstitial impurities in Si using a tight-binding model. 

8 J. L. Birman, Phys. Rev. 121, 144 (1961) has also proposed a 
tight-binding model to explain the Cu centers in ZnS. However, 
no calculations were attempted. 

9 H. Kamimura and A. Yariv, Bull. Am. Phys. Soc. 8, 23 (1963). 
M. de Wit and T. L. Estle recently reported measurements of 
ESR of Cu2+ in ZnO [Bull. Am. Phys. Soc. 8, 24 (1963)]. 

10 R. E. Dietz, H. Kamimura, and M. D. Sturge, Bull. Am. Phys. 
Soc. 8, 215 (1963). 
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atomic orbitals) model in which orbitals of the Cu2+ 

ion and of the four nearest neighbor oxygens only are 
included. 

In Sec. II we present the near-infrared spectra and 
Zeeman effect of copper in zinc oxide, and for compari
son, the spectra of copper in two other tetrahedral 
environments. These results all show the order of levels 
and optical selection rules predicted by ligand field 
theory. In Sec. I l l we give the spin resonance data. In 
Sec. IV we derive effective Hamiltonians for the ground 
and excited multiplets and fit them to the experimental 
data. A set of semiempirical parameters is thus obtained. 
In Sec. V we propose a tight-binding model to explain 
the small values of these parameters in the ground 
state, and calculate the orbital reduction factors. In 
order to explain the results, the model requires a radial 
expansion of the d wave function in the ground state 
and about 40% derealization of the d hole. In Sec. VI 
we calculate the hyperfine interaction with the copper 
nucleus from our model in good agreement with experi
ment. In Sec. VII we discuss the assumptions and 
approximations made. 

II. OPTICAL SPECTRA 

Single crystals of ZnO containing about 0.05% CuO 
were grown from a PbO flux by slow cooling. Most of 
the crystals were in the form of flat plates, the plane of 
which was normal to the c axis. A few crystals, however, 
grew in the form of hollow hexagonal prisms, from which 
slabs containing the c axis of the ZnO were obtained. 
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FIG. 1. Near-infrared absorption of copper in substitutional 
tetrahedral sites in three oxide crystals at 4.2 °K. The (a) spectrum 
is that of copper in the trigonally distorted zinc site of ZnO, with 
the electric vector of the light polarized normal to the c axis 
(E±.c). Lines 5784 and 5832 are transitions a and b, respectively, 
of Fig. 2. The weaker lines lying at higher energies than these 
sharp no-phonon lines involve excited vibrational states or the 
emission of phonons. Spectrum (b) is that of copper in the tetrag-
onally distorted gallium sites of yttrium gallium garnet. Another 
electronic line (not shown here, but see the reference by Pap
palardo) with a similar phonon train is observed at about 7334 
cm"1.. Finally, the spectrum of copper in the cubic tetrahedral 
site of zinc in ZnAl204 is given in (c). f 

Optical spectra were recorded using a Cary Model 14R 
Spectrophotometer or a 1.8 m Jarrell-Ash scanning 
spectrometer using a cooled PbS detector. Spectra were 
recorded between about 3/x and the band gap of the 
ZnO. Apart from a variable absorption tail extending 
down from the intrinsic ZnO edge, the low-temperature 
spectrum consists of two sharp electronic lines at 5784 
and 5823 cm-1 followed by a series of vibrational bands 
extending to higher frequencies. This is shown for a 
polarization (electric vector of the light plane polarized 
perpendicular to the c axis) in Fig. 1 (a).11 This spectrum 
is observed for propagation vectors both along and 
normal to the c axis, indicating the transition to be of 
the electric dipole type. In Fig. 1 (b) and 1 (c) are 
shown the spectra of two other oxide crystals containing 
copper in tetrahedral sites for comparison. As discussed 
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FIG. 2. Energy level diagram of the Cu2+ ion showing the 
progressive reduction of degeneracy of the free-ion term 2D by 
the application of fields of lower symmetry. The diagram is drawn 
for the case of a C$v crystal field, corresponding to a trigonal 
compression along one of the bonding axes. The E state is split 
in first order by a tetragonal distortion, but is split only in second 
order by an interplay of spin-orbit and trigonal fields. Thus, the 
combined action of these fields split the free-ion 2D state into 
five Kramers' doublets, which are indexed here according to 
the Czv double group representations. With the exception of c, the 
transitions indicated by the arrows have been observed. The fact 
that the 5784 line is completely polarized for E±c, while the 5823 
line is seen also for E\\c determines that the ground state has the 
symmetry Te, and that the 5784 transition terminates on the T*, 
Tg component of the 2E state. 

in Refs. 2, 3, and 4, and in Sec. IV of this paper, the 
polarizations and splittings of the lines in these crystals 
are consistent with the transitions of a d hole in the 
appropriately distorted tetrahedral coordination. Thus, 
it seems reasonable to adopt a tight-binding model in 
which a significant part of the copper wave function 
consists of atomic copper 3d orbitals. 

The states of a d hole in a trigonally distorted tetra
hedral field are shown in Fig. 2. The free-ion term 2D 
of the Cu2+ ion is split by the cubic tetrahedral field into 
the 2E and 2T2 states. The remaining orbital degeneracy 

11 The spectra of copper-doped ZnO and yttrium gallium garnet 
have been reported previously by R. Pappalardo, J. Mol. Spectry 
6, 554 (1961), while the spectra of copper-doped ZnO have been 
reported by R. Pappalardo and R. E. Dietz, Phys. Rev. 123, 
1188 (1961) and by H. A. Weakliem, J. Chem. Phys. 36, 2117 
(1962). The assignments for transitions a and b are identical to 
those of Weakliem. 
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of these levels is lifted by a combination of spin-orbit 
coupling and the trigonal field, forming five Kramer's 
doublets. Lines 5784 and 5823 of Fig. 1 (a) are assigned, 
respectively, to transitions a and b. At 78°K, a weak 
absorption at 5707 cm-1 is observed at lower frequencies 
than the lowest lying electronic line, as shown in 
Fig. 3 for E\\c. This absorption is believed to arise from 
the first thermally populated excited level (r6) of the 
T2 multiplet (transition d of Fig. 2) rather than a 
phonon-assisted transition from the lowest electronic 
level (r6). This assignment is not indisputable, but is 
probably correct in view of the following argument: 

1. The strength of the 5707 line is close to the value 
predicted for transition d by the Boltzmann factor and 
the theoretical ratio of oscillator strengths of f(d)/ 
/(*) = 0.8. 

2. If the 5707 line were a phonon-assisted transition 
of type b, there would be absorption on the high-
frequency side of the 5823 line roughly three times as 
strong as is observed. (This figure is strictly correct 
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FIG. 3. The spectrum of copper-doped ZnO for"_E\\c. At 78°K an 
additional peak is observed at 5707 cm-1. Arguments for assigning 
this peak to transition d of Fig. 2 are given in the text. 

only in the weak-coupling limit; in the case of strong-
coupling, selection rules for phonon emission and 
absorption could in principle be different, but, in this 
case, the observed simple agreement of the intensity 
with the Boltzmann factor would have to be fortuitous.) 

At 4.2°K, the line corresponding to transition a is 
observed to be very narrow and to have two components 
split by about 0.9 cm-1, as shown in Fig. 4 (a). The 
ratio of the intensities of the two components is roughly 
that of the abundances of the two naturally occurring 
isotopes of Cu. The interpretation of the apparent 
splitting as an isotope effect is confirmed by the observa
tion that crystals prepared with 99.97% 63Cu show only 
the stronger of the two components DFig. 4 (b)]. The 
longitudinal Zeeman effect of this line was measured 
at 23.5 kG at 4.2°K and below in circularly polarized 
light. By observing thermalization in the ground state 
at 1.7°K, we were able to distinguish between splittings 
of the ground and excited states. Line (b) has a limiting 
half-width at low temperatures of about 8 cm-1, too 
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FIG. 4. (a) The 5784 line of copper-doped ZnO shown for E±c 
at 4.2 °K using the 1.8 m Ebert spectrometer. The splitting is 
caused by an isotope effect: the 70% abundant 63Cu gives rise to 
the more intense line, the 66Cu to the less intense line. The fre
quencies are corrected to vacuum for the refractive index of air. 
(b) The same transition in a crystal doped with 99.97% 63Cu. The 
half-width of this line, which varies from crystal to crystal, 
presumably because of strain, is only 0.55 cm-1. 

broad for useful Zeeman measurements. The g factors 
obtained from these optical splittings and from electron 
spin resonance (ESR) measurements are given in 
Table I. 

The positive sign of the optical g factor of r6(2r2) 
for H\\c was obtained from the sense of the circular 
polarization.12 It should be noted that the above g shifts 
are quite large compared to those observed for Cu2+ in 
octahedral coordination. 

The angular dependence of the Zeeman splitting is 
given in Fig. 5, and a tracing of the Zeeman spectrum 

TABLE I. The g factors for r 6 ( 2 r 2 ) and r 4 r 6 ( 2£) states. 

r4r5(*£) 
Optical Optical 

r6(*r2) 
ESR 

H||c 1.63±0.03 
H±c 0.0 ±0.2 

0.76±0.06 
1.50±0.02 

10.74 ±0.021 
1.531±0.002| 

12 The negative sign of this g factor reported in the abstract 
published in Phys. Rev. Letters 11, A4 (1963). 
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FIG. 5. Angular dependence of the Zeeman effect of the5824 
cm -1 absorption line of copper-doped ZnO. The points are positions 
of the observed absorption peaks at #=23 .5 kG, r=4 .2°K; the 
lines are calculated from Eq. (3), using the g values of Table I. 

for the two directions of circularly polarized radiation 
is given in Fig. 6. The relative intensities of transitions 
e:f=h:g=0M. 

III. SPIN RESONANCE 

The spin resonance experiments were conducted at 
—23 kMc/sec and at —9 kMc/sec using conventional 
frequency stabilized ESR spectrometers with super
heterodyne detection.9 Accurate magnetic field measure
ments were obtained with the aid of an N M R probe 
and a frequency counter. The latter was also used to 
determine the frequency. The measurements were 
performed at 1.2°K. No spin resonance could be detected 
at 77°K. 

The observed spectrum was fully consistent with a 
spin Hamiltonian 

+AIzSz+B(IxSx+IySy), 

with the "z" direction taken along the c axis, and 

(i) 

/=f, s= 1 
2 > 

|g„|=0.74±0.02, |gi| = 1.531±0.002, 

|5 | - (231±4)XlO- 4 cm- 1 , 

Ml = (195± 10)X10-4 cm"1, 

and zero quadrupolar nuclear interaction. The resonance 
linewidth varied from A # - 5 0 G at 6=90° to A#~300 
G at 0=0°. The accuracy limits of gu, gx, A, and B 
reported above are due to this large linewidth. In 
evaluating the spin Hamiltonian parameters, correc
tions had to be applied for the large second-order shift 

in the position of the hyperfine components. The four 
hyperfine lines are not equally spaced but are shifted in 
such a way that the high-field spacing is increased by 
527, the central one is unchanged, and the low-field 
spacing is decreased by 527,. where 

527= 
B2 rA2+K2 

rAz+K2-\ 

L F J ' 2g2/32270L 

g2=gn2 cos20+gi2 sin20, 

K2g2=A2gu
2 co$2d+B2gx

2 sin20, 

(2) 

(3) 

(4) 

and 0 is the angle between the direction of the magnetic 
field and that of the crystal c axis. 

The combination of large values for A and B plus 
the small g values resulted in values of 527 which were 
~ 10% of the hyperfine splittings. Another consequence 
of the large hyperfine interaction was a shift of +f527 
in the position of the center of the hyperfine quartet 
which had to be included in the determination of the 
g values. 

The separate structure of the Cu63 and Cu65 isotopes 
was not resolved so that the isotope shifts are smaller 
than the uncertainties in gu, gx, A, and B as reported 
above. 

As will be shown in Sec. VI, the anomalously large 
values of A and B, compared to those observed for 
other transition metal ions in octahedral and tetra-
hedral coordination, are due to the contribution of the 
unquenched orbital angular momentum of the ground 
2T2 state. 

IV. SEMIEMPIRICAL ANALYSIS 

Before attempting to construct a detailed model to 
account for these data, we will apply to them the usual 
effective Hamiltonian theory.13 The effective Hamil
tonian is set up so as to produce the invariant forms 
appropriate to the symmetry of the problem under 
consideration, and it does not depend on the details of 
bonding since arbitrary parameters are substituted for 
all matrix elements appearing in the expressions for the 
observables. 

The energy levels for the 2E state of Cu2+ in a tetrag-
onally and trigonally distorted tetrahedral site are 
obtained, respectively, by solving the following effective 
Hamiltonians: 

and 
JCeff (tetragonal) = DVQ(E), 

3Ceff (trigonal) = DSZT(A 2 ) , 

(5) 

(6) FIG. 6. Tracing of 
the longitudinal Zee-
man spectrum for where D is a parameter, z is a trigonal axis, and V0(E) 
circular polarization. anc^ ^(^2) are operators whose matrix representations 

13 Y. Tanabe and H. Kamimura, J. Phys. Soc. Japan 13, 394 
(1958). 



E L E C T R O N I C S T R U C T U R E O F C u I M P U R I T I E S I N Z n O 1563 

are, respectively, C^-

and 

Vo(E) = 

T(A*) = 

u v 

1 

- 1 

1 

(7) 

(8) 

The basic orbital functions (u,v) are of the form; 

u=Re(r) ( V S / V T ) (3Z2-r2)/V2 , 

v=Re(r) (\5/\6TT)W{X*- Y2)/r2, 

where Re(r) is a radial part of the 3d(e) wave function 
and (X,Y,Z) is a coordinate referred to the cubic axis 
(Fig. 7). u+ and U- are trigonal bases which are trans
formed from u and v by 

«+= —(l /V2)(«+w) , 

«-=(l/ \2)(«—w). 

(9a) 

(9b) 

As seen from the Hamiltonian, in a tetragonal 
distortion the 2E state is split in first order, and, thus, 
D will directly give a measure of the splitting. On the 
other hand, in a trigonal distortion the 2E state is split 
in second order by an interplay of spin-orbit and 
trigonal fields, so that D is given by 

D=4K'?/AE. (10) 

AE is the splitting of the 2E and 2T2 states, and Kf and 
f' are defined as 

K'=- (im(hx+\vtTig\eu+), (11) 

?=-tf(tfP<±i\v„\eu+$). (12) 

z>trig and vB0 are the single electron operators of the 
trigonal field and the spin-orbit coupling, respectively. 
These considerations are consistent with the large 
(1180 cm -1) splitting observed for Cu in the tetragonally 
distorted tetrahedral site of the garnet as compared with 
the small (39 cm -1) splitting of the 2E state for Cu in 
the trigonal site of ZnO.14 These facts indicate that it is 
reasonable to adopt a usual localized model for an 
excited e hole of Cu2+ in ZnO. 

On the other hand, the effective Hamiltonian for the 
2Ti state of Cu2+ in ZnO is given by 

WQii=KV,-$L(SxTx+SyTy)-!;uSzTz, (13) 

where 3K represents the energy splitting of the 2T2 

state by the trigonal field, f n and f j. are the (anisotropic) 
spin-orbit coupling constants of the single h electron, 

14 The tetrahedral site of the normal spinel ZnAl204 has cubic 
symmetry, so the 17-cm"1 splitting of the 2E state of Cu2+ in this 
site is rather surprising. The site is presumably distorted by the 
presence of the Cu2+ ion, possibly due to a Jahn-Teller effect in 
the orbitally degenerate ground state; by the Frank-Condon 
principle this distortion will remain during the no-phonon transi
tion to the excited state, which is therefore split. 

/ 
/ 

y°2 

FIG. 7. The spz hybridized orbitals of the four oxygens which are 
tetraliedrally coordinated to a central Cu ion. The other spz 

hybridized orbitals of these oxygens make tetrahedral bonds with 
the spz orbitals of the zinc ions. (X,Y,Z) is a coordinate axis 
referred to the cube edges. (x,y,z) is another cartesian system in 
which the z axis is taken along the c axis (the [111] direction). 

and Vo and Tx, Ty and Tz are the trigonal field and 
angular momentum operators whose matrix representa
tions are given, respectively, by 

F0= 

#4-

- 1 

XQ 

-1 

2 

x+ 

Tx= 

1 

~V2 

1 

~v2 

XQ 

1 

~v2| 

1 

0 

x+ 
X-

Ty = 

v2 v2 

#0 

i 

i 

0 

T,= 

x+ 

- 1 

X- XQ 

+ 1 
0 

and a?o are the trigonal bases of the Ti state, 
corresponding to the component of the orbital angular 
momentum along the trigonal (z) axis of —1, + 1 , and 
0, respectively. 

By solving the effective Hamiltonians (6) and (13), 
the energy levels of the Cu2+ ion are given in the 
following, together with their eigenfunctions: For 2E 

1 / f,2\ (\Ki^+) 
W^— [2Kr-2Kf2 , r 4 , r 5 , (14; 

1 / r2\ 
W2=—( -IK'^-IK'2 }, T, 

AE\ 4 / f(-%M+y 
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and for 2T2 

W,= -K+-, r4,r6 

J F 4 = — X" 1 t a n a , 

(15a) 

2 v 2 

' ^ ( i ^ o ) s i n a + ^ ( — ^ x + ) cosa 

^(~~i^o) s i n o ; + ^ ( ^ _ ) cosa 

co to:, 

(15b) 

-) 

2 v2 

f^(iffo) cosa—^(—J#+) since 
T6 # , (15c 

l^(—J#0) cosa—^(J#_) sina 
where 

t a n 2 a = - ^ r i / ( 3 i ^ + — ) , 0 < a < -

and d= J in the wave functions indicates quantization of 
the spin with respect to the c axis. In the expressions 
for Wi and Wz second-order terms producing shifts 
of 2E as a whole have been included. 

Note that the state 1^5 (r 6) is the lowest energy state 
irrespective of the sign of the trigonal field K. 

By using the eigenfunctions (14a) and (15c), we will 
derive the g values for the lowest r 6 Kramers' doublet 
of the 2T2 state, and the (r4 , r5) Kramers' doublet of the 
2E state which will be compared with the experimental 
results. 

Since (u± | Tz \ u±) = 0 and (u+ \ Tx | uJ) = 0, 

and 
^n(r4,r5(

2£))=2 

gi(r4,r5(
2£))=o. 

By comparing these values with experimental values 
of g n « = 1 . 6 3 and gi e x=0.0±0.2, it is clear that the 
configuration mixing effect of the 2T% state plays an 
important role in producing the large g shift of the 2E 
state. Therefore, taking the configuration mixing of 
the 2T2 state by the spin-orbit and trigonal field into 
account, the eigenfunctions of the r 4 , r 5 ( 2E) component 
are written in the following: 

I f 1 / f' 

y/L I AE\v2 
')*(**+) 

-r 
AE 

-H-i*-) , (16a) 

1 f f 

y/L\ AE 

+—f-+\5^y(-*«-)}, (i6b) 
AE\v5 

where L is the normalization constant. 

TABLE II . The off-diagonal matrix element of T between 
the 2E and 2T2 states (*T2y\T\*Eyf). 

\ 2 £ 7 ' 
*T2y\ 

x+ 
x-
XQ 

(*T2y\Te\*Eyf) 

0 y/2k' 
0 0 

2T2y\ 

x+ 

XQ 

(*T2y\Tx\*Eyf) 

0 -k' 
k' 0 
k' k' 

By using Table I I for the off-diagonal matrix elements 
of the orbital angular momentum T, the g values of 
the r4 , r 5 state are given by 

gll(Ti,T^E)) = 2l(l-2k'(2K'+n/^Ey 

+8G-T/AE) 2 ] 1 / 2 , (17a) 

and 

*x(r4,r6(2£))=o, (17b) 

where k'= — (1/V2) &%+ \ h \ eu+). lz is the single-electron 
operator of the z (trigonal) component of the orbital 
angular momentum. 

Similarly, taking into account the configuration 
mixing of the 2E state and further the mixing of the 4P 
state15 due to the tetrahedral potential of the form 
AXYZ, the eigenfunctions of the lowest Kramers' 
doublet T6(2r2) are expressed by 

->= (l/VmWi*o)+(£VAEM-$uJ 

+c2<p4p(ia0)]cosa— 

and 
V2AE 

sma (18a) 

+>= (1/VM)\ [^(-^o)+(fVA£)^(^_) 

+C2<P4P(—^o)] cosa-

yJlAE 

-[*(**-
iaJ) sir ^$uJ)+c2<pu>(haJ) sina . (18b) 

Here M is the normalization constant and <p4p's are 
the wave functions of the Cu2+ 4P state with a 0 = (1/V3) 
X (PX+PY+PZ), a+=- (1/vJ) (a>Px+u2PY+Pz) and 
a_= ( 1 / V J ) ( C O 2 P X + W P F + P Z ) , where o) = e2^\ 

By using these eigenfunctions, the g values defined in 
the spin Hamiltonian (1) are calculated in the following: 

gn = 2 ( + | TZ+2SZ\ + ) = - 2 cos2a-*„ sin2a 

V 
(2 [ r -2^ , ] s in 2 o: -v2f , s in2o : ) 

AE 
, (19a) 

16 The Cu2+ 4P state is mixed with crystal orbitals of the same 
symmetry; this does not affect the argument, here or in Sec. VI. 
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and 

&=2(+|ZVf2S.|-) = 2 

k'r(t'-2K') 

cos2oH sin2a 

_ r ( 
AEL VI 

-sin2a—2f cos2a , (19b) 

where 

kn= — (fax+\lz\fax+) , 

kx= (fax+\l+\fax0). 

Here 1+ is the single-electron operator of the (x+iy) 
component of the orbital angular momentum. In these 
expressions we have dropped the term representing the 
mixing of the Cu 4P state. From the oscillator strength 
of 2 X 10~4 we can estimate an upper limit of 10~2 for 
the 4P mixing coefficient c2. This is too small to affect 
the g values. 

The quantities ku, kL, and k' are the "orbital reduction 
factors" which are equal to unity for pure d-wave 
functions. Since we explicitly took configuration mixing 
into account in the expressions (19a) and (19b), 
deviations of kn, ki, and k' from unity can be attributed 
to the so-called covalency effect. 

We now determine the parameters so as to fit to 
the experimental data. In doing so, we assume isotropy 
in the spin-orbit coupling constants and orbital reduc
tion factors, that isku = kx and f M = fi. The approxima
tion for ku = ki is justified by the smallness of the 
trigonal field. This is not true for f, which if small can 
have appreciable anisotropy due to configuration 
mixing. 

The excited-state parameters k', f', and K' are 
determined from the excited gu and the splitting of the 
2E state by assuming 

£ '=r / fF i , (20) 

where fri is the Cu2+ free-ion spin-orbit constant 
(fpi = 830 cm-1). This assumption is reasonable if the 
semiempirical values of parameters f' and, therefore, 
k' being thus determined are not greatly different from 
the free-ion values. In fact, the results obtained show 
that this assumption is reasonable, a, that is, K/£, and 
k are determined from the g factors of the ground state, 
the configuration mixing terms being calculated from 
&', f', and K'. Then f is determined from the ground-
state splitting between two T6 states (=123 cm-1) 
using the value of a obtained above. Finally, K is 
determined from the ratio K/$ which was determined 
from the g factors of the ground state. The semiempirical 
values of all parameters thus obtained are tabulated in 
the Table III. It is seen that the spin-orbit coupling 
constants and the orbital angular momentum within 
the T2 manifold are small compared to their free-ion 
values. However, the values obtained for K and f 
seem to be anomalously small, considering the value for 

TABLE III. The semiempirical values of the parameters, 
with their definitions. 

AE= 10 Dq=5690 cur1 

r = - 2 (hx+i I veo I fca+i)=86 cm_1 (522 cm_1) 
r' = -\E(*2*+£ I %o I eu+i) = 720 cm"1 

K= (hx+ Krig|*2*+) = -10 cm~la (-57 cm-1) 
K' = - (l/vl) (t2x+1 z>t»g I eu+) = - 77 cm"1 

k=-(hx+\h\t2x+)=0A6 
k'=-(l/^)(t2x+\h\eu+)=0.87 

a By taking into account the anisotropy in f arising from the configuration 
mixing, the values for K, f JJ, and Ti» are found to be +0.4 cm-1, 27 cm"1, 
and 86 cm-1, respectively. 

k which was obtained from the g factors of the ground 
state. Thus, some doubt is thrown on the assignment of 
the 5707 line to the upper of the two r 6 components 
of the ground 2T2 state, rather than a phonon-assisted 
transition from the lowest electronic level (F6). As will 
be discussed in Sec. VI, a value of f can be estimated 
from the observed hyperfine splitting and then K will 
be estimated from the value of K/{. These values are 
shown in the parentheses in Table III. The negative 
value of K is consistent with the contraction of the Zn 
site along the c axis. 

V. TIGHT-BINDING LCAO MO MODEL 

In this section we consider a model to explain the 
small values of the h parameters semiempirically 
determined in the previous section. Such small values of 
the fa parameters suggest that strong covalency between 
the copper ion and its environment must be considered. 
In pure ZnO each zinc atom is situated at the center of a 
tetrahedron formed by its four nearest neighbor 
oxygen ions, to which it is covalently bonded. In our 
model we assume the bonding electrons to be in the 
spz orbitals. We further assume that when a cupric 
ion substitutes for zinc, the copper d electrons make a 
bonds with surrounding four oxygen ions. To do this 
we hybridize the Cu2+ fa orbitals towards the nearest 
neighbor oxygen ions, thus making strong a bonds with 
the spz hybridized a orbitals of the oxygen ions which 
direct towards the Cu2+ ion. The remainder of the spz 

hybridized a orbitals of the oxygen ions makes a bonds 
with the spz orbitals of the second nearest neighbor 
zinc ions. Therefore, there are no oxygen orbitals left 
to form x bonds with d orbitals of the copper. Assuming 
that the adjacent bonds are not greatly affected by the 
fa hole of the Cu2+ ion, the electronic wave function for 
the a bond between the Cu and oxygen ions may be 
constructed from suitable combinations of Cu 3d (fa) 
and <T orbitals of four oxygen ions in the LCAO MO 
scheme. 

In Td symmetry, the four spz hybridized orbitals 
tfi, <T2, o% o-4 associated with the four surrounding 
oxygen ions 1, 2, 3, 4 (Fig. 7) are classified into bases of 
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the irreducible representations a± and fa as follows.16 

ai: <ri+o"2+0-3+<n) 

X, = iC0'l+<,r2— 0*3— C4] , 
Xf=i[o-l+0-4— 0-2 — <r3]. 

Throughout the paper we neglect the overlap between 
the sp* a orbitals of the adjacent oxygen ions. X$, Xv, X{ 
combine with the Cu fa wave functions to form /2-type 
bonding and antibonding molecular orbitals, while the 
#i oxygen orbitals and the copper e orbitals arenonbond-
ing. We now denote the Cu2+ hybridized orbitals by 
<Pd*(%o), <Pd<r(%+), a n d <pda(xJ), c o r r e s p o n d i n g t o t h e 
component of the orbital angular momentum along the 
c axis, 0 , - 1 , and + 1 , respectively. We can, therefore, 
write for the molecular orbitals of Ti symmetry: 

(i=Xo, x+, and xJ), (21) 
where 

X(*o)= ( 1 M ) ( X ^ + X , + X r), (22a) 

X(x+) = - (1/V3) (coXs+co2X„+Xr) , (22b) 

x(x-)= (l/v3)(co2X^+coX,+ X f), (22c) 
with 

The normalization factor N is given by 

i \ r = l - ( 4 / v 3 ) p 5 + p 2 , (23) 

where 5 is the diatomic cr-type overlap integral between 
the Cu <pd<r and the 02~ c orbital. 

In the above expression we have shown the anti-
bonding molecular orbitals with positive p. As one of 
the authors has pointed out,17 the trigonal distortion 
along the c axis makes \f/(fa,xo) different from x//(fa,x+) 
and \l/(fa,X-). However, as we made the isotropic 
approximation in the semiempirical analysis in the 
previous section, we have used a single coefficient for 
the fa molecular orbitals (21). 

In the ground state, the bonding fa, nonbonding a±, 
and nonbonding e orbitals are filled with electrons; 
the antibonding fa orbitals possessing five electrons or 
one hole. Only the energy separation of the T2 and E 
states is known; the relative energies of the other 
states are unknown, as are their positions with respect 
to the ZnO levels. 

Using this model, we can derive expressions for the 
orbital reduction factors k and k', whence we can 
estimate the amount of the derealization of d hole. The 
orbital reduction factors have already been defined as 

k=-(fax+\lz\fax+), (24) 
and 

k'=-(l/^)(fax+\lz\eu+). (25) 

16 C. A. Coulson and M. J. Kearsley, Proc. Roy. Soc. (London) 
A241 433 (1957). 

17 H. Kamimura, Phys. Rev. 128, 1077 (1962). 

We have 

lz <pda (x+) = — ipdo (x+), (26a) 

/ (hxfa))*<pd*(.x±)dT== / xfa-)%<Pd*(x+)dT 

= — x(%+)*<Pdo(x+)dT 

= - ( 2 / v 3 ) 5 , (26b) 

l^(u+)=-^cpd0(x+)Re(r)/Rt2(r), (26c) 
so that 

P2 

* = 1 (27) 
l - ( 4 / v 3 ) P S + p 2 

and 
a- (2/v3")p5/ 

W = . (28) 
[ l - ( 4 / v 3 ) P 5 + p 2 ] 1 / 2 

Here S* is an integral similar to S (the angular part of S 
and S' are the same), but it contains the radial part of 
the Cu2+ e wave function Re(r) instead of the respective 
fa part -R*2(r), and a=J*Rt2(r)*Re(r)dr. Although the 
radial parts of the e and fa wave functions are equal in 
the free ion, they do not have to be equal in the crystal, 
and it will be necessary to take account of this fact. 

Since S and S' may differ, values for p and S can be 
obtained from (27) and (28) only by making some 
assumption concerning S'. If we assume free ion 
Hartree-Fock wave functions for the Cu2+ e orbital18 

and for the 02~ 2s and 2p orbitals19 and Cu—0 distance 
equal to t h e Z n - 0 distance (1.89 A), we find S'=0.082. 
Substituting this value in (27) and (28), assuming a = 1 
in (28), and using the semiempirical values of & = 0.46 
and ft'= 0.87, we find 5=0 .27 and p=0.78. This yields 
the covalency A=p 2 / ( l+p 2 ) = 0.38. If S' is allowed to 
vary between the limits 0<S'<S, then 0.41>A>0.21 
and 0 . 2 0 < 5 < 0.65. Since values of 5=0 .65 are un
reasonably large, it follows that S'<S, and we conclude 
that the radial extension of the Cu2+ fa wave function is 
greater than that of e. I t will be shown later that the 
same conclusion can be derived from analysis of the 
hyperfine data. 

So far we have assumed a= 1 in (28), but if Re^R^ 
a will be less than unity. This would reduce p by the 
factor a, and, to some extent, increase 5 . Thus, the 
value for the covalency 38% calculated assuming 
free-ion extension for the e orbital and a= 1, is probably 
an upper limit. 

Finally it should be remarked that k in (27) ap
proaches zero as p becomes large. This is due to the fact 
that the fa orbitals form a bonds with the surrounding 
<T orbitals. However, in the case of octahedral coordina-

18 R. E. Watson, Technical Report No. 12, Solid State and 
Molecular Theory Group. MIT, 1959 (unpublished). 

19 R. E. Watson, Phys. Rev. I l l , 1108 (1958). 
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tion, in which the fa orbitals form w bonds, k lies between 
landO.5.20 

VI. THEORETICAL INTERPRETATION OF 
THE HYPERFINE DATA 

The hyperfine interaction between the d hole and the 
Cu nuclear moment is given by21 

~2ft*/M 3(S. r ) ( I . r ) - r 2 S.I 8TT \ 
3ChfS= ( _ + + _ i . S 8 ( r ) J, (29) 

I \ r3 r5 3 / 
where 0 is the Bohr magneton, /x is the magnetic 
moment of the Cu nucleus, I is the Cu nuclear spin, 
and S and 1 are, respectively, the spin and orbital 
angular momentum of the d hole. The first term 
represents the interaction of the Cu nuclear moment 
with the magnetic field due to the orbital motion of 
the d hole. The second term represents the dipole-dipole 
interaction between the spin magnetic moment of the 
hole and that of the nucleus. The last term, containing 
the delta-function d(v), is the Fermi contact term which 
arises from the polarization of the s electrons of the Cu2+ 

core by exchange interaction with the d hole. By using 
the lowest Kramers' doublet eigenfunctions (18a) and 
(18b), with molecular orbitals (21) for *p(x+), \p(xJ) 
and \p(xo), we can calculate the hyperfine constants A 

X is a measure of the net spin density at the Cu nucleus: 

X=4irE[>t f a(0)-p^(0)] , -
is 

where ptis and p±ia are the densities at the Cu nucleus 
of s electrons of ith. shell with spins up and down 
respectively, and 

0.,=/>"wi°>-
(—\ = t' Ri*(r)Re(r)-rHr. 
V A 2 e Jo r* 

20 K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542 
(1953). 

21 A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London) 
A205, 135 (1951). 

and B in (1). These are denned as 

ftu ls /3z2—r2 3zx 3zy \ 
A = 4 -<+1—+( Sz+—Sx+—Sy) 

I rd \ r5 rb r5 / 

8TT 

+—d(r)Sz\+), (30a) 
3 

and 
Bu lx /3x2—r2 3xy 3xz \ 

B = 4-<+1 - + S x+—Sy+—Sz) 
I rz \ rb rh rh J 

8TT 

+ — 5 ( r ) ^ , | - ) , (30b) 
3 

with A = B for cubic symmetry, where the z axis is 
taken along the c axis. 

In order to calculate A and B we express <pda(x+), 
<Pd<x(x-), and (pd<r(xo) in terms of eigenf unctions of Lz 

(L=2) whose eigenvalue is ML as follows; 

^ ( % ) = - ( l / ^ C ^ ( J f L = - 2 ) - ^ ( J f L = + l ) ] , 
<pda(xJ)=(l/^)l^<p(ML^2)-<p(ML=-in} 

<Pd<r(Xo)=<p(ML=0). 

Thus, the hyperfine constants are given by 

The first term in the expressions for A and B rep
resents the contribution of the fa molecular orbital part 
of the Kramers' doublet eigenfunction, the second that 
of the Cu 4p part, the third that of the Cu 3d(e) part, 
and the last the exchange polarization effect of the Cu 
core s electrons. It can be shown that the orbital 
contribution from the ^p part of the wave function 
tends to cancel that of the fa molecular orbital, while 
the spin contributions add. This result is opposite to 
that obtained by Bates et al., for Cu2+ in a tetragonally 
distorted tetrahedral site.22 In any case, the contribution 
of the Ap part is very small in the present case, as 
mentioned in IV and we can neglect it. In this we differ 
from Bates et al., who suggest that this mixing is 
important in explaining the absence of hyperfine 
structure in copper dipyrromethene. 

From the observed values of the hyperfine constants 
22 C. A. Bates, W. S. Moore, K. J. Standly, and K. W. H. 

Stevens, Proc. Phys. Soc. (London) 79, 73 (1962). 

ft* 1 r 1 / 1 v (2 6 1 \ / 1 v (2 6 3v2 \ 
A = 4 —< — > ( - cos2a— sin2o: sin2o: )+c2( — > [ - cos2aH— sin2o:H sin2o: J 

IMlN\r"/t2\7 7 7V2 / V 3 / 4 3 A5 5 10 / 

/ 1 \ 1 1 /13vl V2 2 12 \ cos2a 1 1 
+ 2 < - - > ( r'sin2a K'sin2a—^cos2** (£'-2K') sin2a )+ x , (31a) 

\r*/t2eVNAE\ 14 7 7 7 / 3 N J 

fo l r l / H / 1 1 15 \ / 1 \ / 1 3 13 \ 
B = A — < — ) —cos2a sin2o:H sin2o; ] — c2( — > + - cos2a+- sm2o:H sm2a 1 

IMLN\r*/t2\ 7 7 14v2 / \r*/ip\ 5 5 10v2 / 

/ 1 \ 1 1/43 S6K'-SS?' S'-2K' \ cos2a 1 "] 
+2< — > 1 —f' cos2a+ sin2a+ sin2a ) + x . (31b) 

V / w v / N A £ \ 2 1 42v2 6 / 3 N J 



1568 D I E T Z , K A M I M U R A , S T U R G E , A N D Y A R I V 

TABLE IV. The semiempirical values of (1A3)<2 
and x of Cu2+ in ZnO. 

Case 

I 
I I 

<l/r%(a.u.) 

, 4 > 0 a n d £ > 0 5.81 
, 4 > 0 a n d £ < 0 10.99 

x(a.u.) 

-3 .83 
-62 .5 

Hc(kG) 

- 1 6 2 
-2640 

A and B we can estimate (1A3)«2 and x. In this estima
tion, we use for a the value of 48° 24' which was 
determined from the analysis of the g factors of the 
ground state. And further, as in Sec. V, we assume 
free-ion wave functions for the 3d(e) part, whence 
(1/V3)e=8.25 a.u. (atomic units). We also assume that, 
in the region near the Cu nucleus, the fa wave function 
<Pda is reduced from the e wave function \f/e by a constant 
factor q, that is, <pd<r(r)= (l/q)\f/e(r), whence (1A% 
= (l/y)(l/V3}e. The calculated values of <l/r% and 
X depend on the signs assumed for A and B, as shown 
in Table IV. 

For other combinations of sign, (l/r8)^ turns out to 
be imaginary, so these cases are physically meaningless. 

In the table we show the spin density x and the 
effective field Hc at the Cu nucleus. Hc is denned as 
f/xJBxa.u. = 4.224Xl04x G/a.u. Abragam, Horowitz, and 
Pryce have found % for Cu2+ to be — 2.9 a.u. (equivalent 
to Hc= —122 kG) for a range of hydra ted copper salts.23 

In general, the experimental values of x f° r divalent 
iron series ions in hydrated salts are close to —3 a.u.23 

Watson and Freeman have calculated x using so-called 
unrestricted Hartree-Fock wave functions which have 
different radial dependencies for opposite spins, even 
for the same azimuthal quantum number l.u They show 
that the net magnetic field at the nucleus is the sum 
of terms of opposite sign arising from the different s 
shells. The Is and 2s shells, which lie inside the maxi
mum of the 3d spin density, have their majority 
(parallel) spin electrons attracted outwards by exchange 
interaction with the unpaired 3d spins. The minority 
(antiparallel) spin density, therefore, preponderates in 
the region near the nucleus, and the contribution of 
these shells to the effective field is therefore negative. 
The effective field due to the 3s shell, on the other hand, 
is positive, and smaller than the Is and 2s contributions. 
This is essentially because the 3s shell lies partly inside 
but mainly outside the 3d maximum. The effective 
fields due to the Is, 2s, and 3s shells, therefore, tend to 
cancel leaving a net negative field at the nucleus, i.e., 
X is negative. 

From the analysis of the optical data in the previous 
section, we expect that the 3d(fa) spin density is 
expanded outwards. Therefore, the effective field due to 
the 3s shell is smaller than that in Cu2+ ion in hydrated 
salts, and, thus, we would expect x to be large and 

23 A. Abragam, J. Horowitz, and M. H. L. Pryce, Proc. Roy. 
Soc. (London) A230, 169 (1955). 

24 R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 
(1961). 

negative. On the following grounds we can rule out the 
case II in Table IV. The value of (1/H%2 calculated for 
this case is larger than the free-ion value (8.25 a.u.) 
so that the 3d(fa) wave function must be contracted 
relative to the free-ion wave function. This is incon
sistent with the large value of x which in itself is 
unreasonably large. Hence, we conclude that the 
effective field is -162 kG, <l/r3>,2=5.81 a.u. and 
A>0, B>0. The effective field is about 1.3 times as 
large as that of Cu2+ in a hydrated salt and (l/V3)^ is 
about 30% reduction from its free-ion value. From these 
results it can be also concluded that the origin of the 
large values of A and B is the contribution from the 
orbital motion of the fa hole. 

We can estimate the spin-orbit coupling constants 
—f and —f of the fa and e holes from the above value of 
(l/V3)^. Since the oxygen orbital is a type, there is no 
contribution from the spin-orbit coupling of the oxygen 
ions. Therefore, for f, we can write 

i <i/r% 
f = fFI, 

N <l/r*>pi 

if we neglect the small overlap between c orbitals on 
adjacent oxygen ions. We also neglect the off-diagonal 
term between 02~ and Cu2+ because only the region near 
the Cu nucleus contributes significantly to (1/r3). With 
the normalization factor N =1.12 and fFi=830 cm-1 

we find —f=—522 cm"1. Using the value of 2£/f 
(= —0.11) which was obtained from the g factor of the 
ground state, we find K= —57 cm-1. These values are 
in poor agreement with the values obtained from the 
zero-field splitting of the two r6(2r2) components 
(Table III). Thus, our model is not consistent with the 
very low values for f and K. On the other hand, f' is 
calculated by 

i <1AV 
y/N (1A3)FI 

Since, in our approximation, (lA3)*2e/(l/r
3)Fi= ((1A3)*2/ 

X(1A3)FI)1/2> —f is estimated to be -654 cm"1, in 
good agreement with the value of —720 cm-1 obtained 
from the optical data (Table III). 

VII. DISCUSSION 

Two main conclusions emerge from this work. The 
first is that the large g shifts of Cu2+ in ZnO can be 
explained in terms of a model in which the fa hole 
spends about 60% of its time on the Cu2+ ion and the 
remainder on the four neighboring oxygen ions. The 
second conclusion is that the Cu2+ fa wave function is 
radially expanded relative to the d wave function of the 
free ion; the e wave function is not so expanded. 

The second conclusion is supported by two indepen
dent sets of data; the Zeeman effect on the one hand 
and the hyperfine interaction on the other. 
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The large derealization of the fa hole raises the 
question whether the wave function extends appreciably 
beyond the nearest neighbors of the Cu2+ ion. Our 
model is related to that of Slater and Pauling25-28 in 
which a total wave function for the whole crystal is 
constructed from a bonding spz hybridized orbitals. 
The question can then be put in this form: Are the a 
bonds between Zn and O atoms near the Cu2+ impurity 
appreciably perturbed by the presence of the fa hole? 
We could use, for example, the semilocalized crystal 
orbitals of Morita29 and add to them fa antibonding 
orbitals of the Cu2+ ion. This calculation is complicated 
and has not been completed. Our model does not allow 
for 7r bonding, and minimizes the interaction of the 
copper ion with next nearest neighbors. The alternative 
model of Wolfsberg and Helmholtz30 allows ir bonding, 
and, because of this, the a overlap is less. In our model, 
however, we have tacitly assumed that the hybridiza
tion of the nearest neighbor oxygen ions is stabilized 
for spz according to the bonding requirements of the 
rest of the crystal. Since the spz geometry for the 
oxygens also is consonant with maximum o— bonding 
overlap with the copper ion fa orbitals, it is reasonable 
to assume that spz hybridization produces a minimum 
energy for the system. 

An alternative approach which should give us some 
idea of the radial extension of the fa wave function is 
that of band theory. From this point of view, the hole 
is in a tightly bound acceptor state; the oxygen atomic 
orbitals are the basic wave functions of the valence 
band. If we assume a hydrogenic model for an acceptor,5 

an effective mass of 1.8 m0
zl and a dielectric constant 

of 8.5, we find the mean radius of an acceptor state to 
be 2.4 A. As this is barely more than one atomic spacing 
and as the hydrogenic model must give an upper limit 
to the radial extension, our assumption that the fa 
wave function only extends over the Cu2+ ion and its 
nearest neighbors appears to be justified. 

It remains to discuss two approximations made in 
the semiempirical analysis of Sec. IV. The assumption 
that for the 2E state h' = f'/f FI is justified in our model. 

25 L. Pauling, Proc. Natl. Acad. Sci. (U. S. A.) 14, 359 (1928). 
26 J. C. Slater, Phys. Rev. 37, 481 (1931). 
27 L. A. Schmidt, Phys. Rev. 92, 1373 (1953). 
28 S. Asano and Y. Tomishima, J. Phys. Soc. Japan 11, 644 

(1956). 
29 A. Morita, Progr. Theoret. Phys. (Kyoto) 19, 534 (1958); 

A. Morita and K. Takahashi, ibid. 19, 257 (1958). 
30 M. Wolfsberg and L. Helmholtz, J. Chem. Phys. 20, 837 

(1952). 
31 R. E. Dietz, J. J. Hopfield, and D. G. Thomas, J. Appl. 

Phys. Suppl. 32, 2282 (1961). 

From (28) we can write 

^=(fVfFi) ( l~2p5 , /a^) . 

Using p=0.78, S' = 0.082, and a=l, this gives £' = 0.9 
X(fVrFi). A self-consistent calculation gives f =765 
cm-1, K'= — 85 cm-1, and &'=0.85, very little different 
from the results in Table III. The other approximation 
that k and f for the 2T<z state are isotropic is more 
difficult to justify. It is easy to show that a large 
anisotropy in k would not be inconsistent with our 
model, as such anisotropy will make very little difference 
to the covalency parameters. 

There is, however, one puzzling piece of experimental 
data; that is the small intensity ratio of the transitions 
e and / (Fig. 2) which has not been taken into account 
in determination of the semiempirical parameters. This 
ratio is given on the isotropic approximation to be 
tan2a, but a=48° 24' and the observed ratio is 0.62. 
Thus, the introduction of anisotropy appears to be 
required. However, intensities depend on so many 
unknown factors, in particular the characteristics of 
the odd parity states from which crystal field transitions 
derive their intensity, that the intensity data have been 
ignored in this analysis. The role of the anisotropy in 
the intensity will be discussed in another paper. 

We conclude that the assumptions on which our 
analysis is based are sound, though more work needs to 
be done on the origin of the intensities of the crystal 
field transitions and on the effect of the impurity on 
more distant neighbors. Such work should not affect 
our qualitative conclusions. 

Note added in proof. In the present work we have de
termined K and Kf from independent experimental 
data. According to the definitions for K and K' given 
in Table III, if fa and e orbitals are constructed from d 
orbitals and Vtrig^Sz2—r2, K= —Kr. Therefore, at first 
glance the same sign for K and Kr seems unreasonable. 
However, in the present case, the orbitals are not pure 
d orbitals; but even if they were, fourth order terms 
can change the relative sign [see, for instance, D. S. 
McClure, J. Chem. Phys. 36, 2757 (1962)]. 
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